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Bethe-Zel’dovich-Thompson fluids are ordinary, single-phase fluids in which the 
fundamental derivative of gasdynamics is negative over a finite range of 
temperatures and pressures. We examine the steady transonic flow of these fluids 
over two-dimensional thin wings and turbine blades. The free-stream state is taken 
to be in the neighbourhood of one of the zeros of the fundamental derivative. It is 
shown that a modified form of the classical transonic small-disturbance equation 
governs such flows. Critical Mach number estimates are provided which take into 
account the non-monotone variation of the Mach number with pressure predicted in 
previous investigations. Critical Mach numbers well over 0.95 are predicted for 
conventional airfoil sections. Numerical solutions reveal substantial reductions in 
the strength of the compression shocks occurring in supercritical flows. Further new 
results include the prediction of expansion and compression shocks in the same flow 
and compression bow shocks in flows with subsonic free streams. 

1. Introduction 
Transonic flows are characterized by significantly larger losses than those 

corresponding to the subsonic and low supersonic regime. An important component 
of these losses is that due to the formation of shock waves on the wing or turbine 
blade. In addition to the irreversibility of the shocks themselves, the strong adverse 
pressure gradients can lead to boundary-layer separation. The resultant vibration 
and noise can also have serious consequences in the operation of modern 
turbomachinery . 

Efforts to reduce these losses or to narrow the range of transonic Mach numbers 
are hindered by the fact that shock formation is due to the intrinsic nonlinearity of 
the fluid. A convenient measure of this nonlinearity is the thermodynamic parameter 

where p and s are the fluid density and entropy and 

is the thermodynamic sound speed. Here p = p(p, s) is the fluid pressure. This 
parameter was first introduced by Duhem (1909) in his analysis of the shock 
admissibility conditions for general fluids. Thompson (1971) has demonstrated the 
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significance of r to a wide range of compressible flows. For this reason, Thompson 
has referred to ( 1 . 1 )  as the fundamental derivative of gasdynamics. Perhaps the 
earliest discussion of thc fundamental derivative in the context of transonic flows is 
due to Hayes (1966) who demonstrated that' the classical transonic similarity 
parameter may be written 

1 -M2, K ,  = T 

( r e ) ;  ' 

where M ,  is the free-stream Mach number, e is a small parameter measuring the 
thickness or angle of attack of the wing or blade and 

is a non-dimensional version o f f ,  evaluated at the thermodynamic state of the free 
stream. If we consider perfect gases, i.e. those satisfying 

p = pRT (1.5) 

with c,  = constant, (1.6) 

where R is the gas constant: T is the absolute temperature and c, is the specific heat 
a t  constant volume, we find that 

r=-- - Y m + l  a y +  and therefore r = - 
P 2  2 '  

where y is the usual ratio of specific heats. The well-known conditions for the 
thermodynamic stability of any fluid require 

c, (p ,  5") > 0 and (p,  T )  > 0 

which, in turn, require that y > 1. As a result, r> 1 if the gas is perfect. Owing to 
this lower bound on r, the critical Mach number of perfect gases tends to be in the 
general range 0.6-0.8 for typical two-dimensional airfoil profiles a t  small angles of 
attack. By critical Mach number we mean the free-stream Mach number at which 
regions of supersonic flow, and thcrcforc shock waves, first appear. Although shock- 
free configurations have been developed such solutions tend to be isolated and give 
rise to strong shocks in the neighbourhood of the design point. Summaries of the 
relevant design strategies have been reviewed by Nieuwland & Spee (1971) and 
Sobieczky & Seebass (1984). 

When the densities and temperatures are in the general neighbourhood of those 
corresponding to the thermodynamic critical point, it  is well-known that the ideal 
gas model (1.5) no longer gives an accurate quantitative or even qualitative 
approximation to the actual fluid response. A more complex equation of state, such 
as that due to van der Waals, is required to model even the qualitative behaviour. 
In this dense gas regime i t  is found that the sound speed of most fluids decreases with 
isentropic increases of the density. From (1.1) it is clear that p f / a  < 1 in this region, 
thus resulting in a significant reduction in the intrinsic nonlinearity of the fluid. As 
an example of this reduction, we compare the values of pT/a for ordinary octane 
(C,H,,) as obtained in the low-pressure and dense gas regimes. If we employ the 
physical property data given by Reid, Prausnitz & Poling (1987), we find that the 
low-pressure, i.e. perfect gas, sound speed of octane is approximately 210 m/s at 
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octane’s critical temperature of 587 K. The corresponding value of pT/a is 
approximately 1.01. If we employ the well-known Martin-Hou equation of state 
(Martin & Hou 1955) we find that the sound speed is only about 95 m/s a t  the same 
temperature but a t  a density of about half the critical value, i.e. a t  approximately 
0.115 gm/cc. The corresponding value o f p r l a  is found to be 0.41 which is seen to  be 
about 40% of the low-pressure value and about a third of the value found for a 
perfect diatomic ( y  = 1.4) gas. If we consider a wing for which the critical value of 
K ,  is 3.0 and E = 0.06 we find that the critical Mach number in the dense gas case is 
approximately 18 YO larger than the low-pressure result for octane. 

Even more dramatic differences with the perfect gas theory are seen in fluids in 
which the decrease in the sound speed is so large that the fundamental derivative 
becomes - negative. This region of negative r is depicted in figure 1 where constant 
r = p r / a  contours have been computed and plotted for the case of a van der Waals 
gas with constant specific heat c,. The fact that  fluids which have sufficiently large 
specific heats will possess a region of negative was first pointed out by Bethe (1942) 
and Zel’dovich (1946). More detailed studies were carried out by Lambrakis & 
Thompson (1972), Thompson & Lambrakis (1973), and Cramer ( 1 9 8 9 ~ )  who 
employed highly accurate equations of state to  identify a wide range of negative-r 
fluids of practical interest. One such example is the common heat transfer fluid 
referred to as FC-70. The variation of pT/a on isotherms has been computed and 
plotted for FC-70 in figure 2. Because of the significance of these early studies, we 
refer to fluids which have a region of negative r similar to  that depicted in figures 
1 and 2 as Bethe-Zel’dovich-Thompson (BZT) fluids. 

The first to examine near-sonic flows of BZT fluids was Thompson (1971) who 
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FIGURE 2. Computed values of pT/a along isotherms for FC-70 (perfluoro-tripentylamine). 
Equation of state used is due to Martin & Hou (1955). Full details are found in Cramer (1989a). 

derived the following relation between the fundamental derivative and the area 
variation of a duct or streamtube : 

(1.9) 
1 p T 1 d 2 A  [%Jt=, = ?[eA& 

where A = A(x) is the streamtube area and M is the Mach number. From (1.9) and 
the well-known fact that the streamtube area has an extremum at the sonic condition 
it may be shown that supersonic flow may be attained only by way of a throat, i.e., 
d2A/dx2 > 0, if r > 0 and by way of an anti-throat, i.e., a local maximum in the 
streamtube area, if r<O. Thompson (1971), Cramer (1991), and Cramer & Best 
(1991) also demonstrated that the flow cannot be accelerated isentropically from 
stagnation conditions, i.e. those having M = 0, if r < 0 a t  every point in the flow. 
These results clearly suggest that  the onset of supersonic flow will be delayed in the 
negative-rregion. One of the main objectives of the present investigation is to verify 
and quantify this assertion. 

The work of Duhem (1909), Bethe (1942), Zel’dovich (1946), Thompson (1971), 
Thompson & Lambrakis (1973), Peg0 (1986), Menikoff & Plohr (1989), and Cramer 
(1991) demonstrates that the fundamental existence issues for shock waves are 
significantly more complicated when BZT fluids are considered. When r < 0 at  every 
point in the flow, the well-known compression shocks of the perfect gas theory violate 
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the entropy inequality and will disintegrate if inserted in the flow. The disintegration 
into a centred compression fan in the context of steady supersonic flows was first 
described by Thompson (1971). Elementary shock formation studies, examples of 
which are found in Landau & Lifschitz (1959), demonstrate that  such shocks will not 
form from smooth initial conditions. Thus, even when the critical Mach number is 
exceeded, the strong adverse pressure gradients associated with compression shocks 
will not occur and it appears that  shock-induced separation may be eliminated 
completely in flows having r < 0 a t  every point. 

Although compression shocks disintegrate in r < 0 regions, expansion shocks, 
forbidden in the perfect gas theory, satisfy all the relevant admissibility conditions 
and are expected to  occur in supercritical flows in which r < 0 a t  every point. 

If the fundamental derivative changes sign in the flow, both expansion and 
cornprcssion shocks may exist in the same flow. On the other hand, both compression 
and expansion shocks not satisfying the basic existence criteria may disintegrate 
either completely or in part. Examples of the partial disintegration processes are 
found in the work of Wendroff (1972), Cramer & Kluwick (1984), Cramer et al. (1986), 
Cramer & Sen (1987), Kluwick & Koller (1988), Cramer (1989b), Menikoff & Plohr 
(1989), and Cramer (1991). Thus, the adverse pressure gradients may be reduced even 
under the relatively weak condition that r< 0 only in part of the flow. 

Further evidence of the complex nature of transonic flows of BZT fluids is found 
in the nozzle flow studies of Leidner (1990), Chandrasekar & Prasad (1991), Cramer 
& Best (1991), and Warner (1990). The first and third studies were restricted to  
isentropic flows. The remaining articles included the effects of normal shock waves 
in quasi-one-dimensional flows. In  particular, Chandrasekar & Prasad developed an 
extension of the weak shock theory of Cramer & Kluwick (1984) to study the flow in 
the neighbourhood of both throats and anti-throats with M sz 1 and r sz 0. The 
various flow patterns were delineated, the most complex of which included both 
compression and expansion shocks in the same flow. The critical role of sonic shocks, 
i.e. shocks having a Mach number identically equal to one either upstream or 
downstream of the shock, was also revealed. The report by Warner extends the 
analysis of Cramer & Best (1991) to  include finite-amplitude normal shocks. It was 
found that a total of three shocks - two compression and one expansion - could occur 
in conventional convergingdiverging nozzles. This contrasts with the perfect gas 
theory where only one shock may appear and the small-disturbance theory of 
Chandrasekar & Prasad (1991) which can have a maximum of two shocks. 

Results of direct interest in the present study are described by Leidner (1990), 
Cramer (1991), and Cramer & Best (1991). I n  these studies, i t  was shown that the 
Mach number may increase with density if r < 1. This contrasts with the perfect gas 
theory where the Mach number always increases during isentropic expansions. A 
sketch of the Mach number variation of BZT fluids is provided in figure 3. Each curve 
may be considered as originating at the same thermodynamic state but with different 
values of the Mach number. Thus, the entropy is not only constant along each curve 
but from curve to curve. The work of Leidner (1990) and Cramer & Best (1991) 
reveals that  the same general behaviour can also be observed even if each curve is a 
different isentrope. At pressures and temperatures such that the corresponding value 
of Tis  negative, the non-classical variation of the Mach number may also be observed 
at subsonic speeds. It would therefore appear possible to find flow conditions under 
which the expansion over a wing or turbine blade may actually lead to a decrease in 
the local Mach number which, in turn, would be expected to delay the onset of 
supersonic flow. 
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FIGURE 3. Sketch of Mach number variation in BZT fluids. 

A second effect of the non-classical variation of the Mach number is related to the 
fact that  the classical approach for the prediction of the critical Mach number 
depends on the assumption that the Mach number decreases monotonically with 
increasing density or pressure. This assumption is no longer valid when BZT fluids 
are considered and a fundamentally different estimation scheme is clearly required. 
In  fact, inspection of figure 3 clearly reveals that  the flow may become supersonic 
even in regions of compression. Cramer & Best (1991) have argued that the latter 
effect should give rise to bow shocks in flows having subsonic free streams. The 
present study provides detailed numerical evidence supporting their claim. 

Numerical studies of external transonic flows have been carried out by Morren 
(1991). In  this investigation, numerical solutions to the full Euler equations were 
obtained. The gas model was taken to  be that due to van der Waals. Significant 
increases in the critical Mach number were reported which naturally resulted in very 
large increases in the lift to wave-drag ratios. 

The present study examines the details of external transonic flows over thin wings 
and turbine blades. The usual assumption of small disturbances to  a near-sonic free 
stream will be employed. A fundamental difference between this and the classical 
approaches is that we will make the additional assumption that the undisturbed 
state is in the vicinity of one of the zeros of r. I n  particular, we require that 

(1.10) 

This assumption is equivalent to that employed by Cramer & Kluwick (1984), 
Cramer et al. (1986), Kluwick & Koller (1988), and Chandrasekar & Prasad (1991). 
When (1.10) holds, the local value of r can change sign even though the density 
perturbations are small. It will be seen that the non-monotone Mach number 
variation will also be contained in the present theory. 

The general approach will be to derive a transonic small-disturbance equation 
governing the flow. As in the previous investigations of flows in which the 
fundamental derivative is small, terms which were correctly neglected in the 
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r = O( 1) theory may make a non-negligible effect when Tis small. The modified form 
of the small-disturbance equation has been given by Cramer (1991); the detailed 
derivation of this equation is provided in $3 of the present study. A scheme for the 
estimation of the critical Mach number is provided in 36. We also present numerical 
solutions to  the modified transonic small-disturbance equation. The numerical 
approximation scheme is outlined in $ 7  and the results are presented in $8. 

The principal advantage of the present approach over purely numerical studies is 
that the analytical structure is easily revealed. Furthermore, the non-classical effects 
may be delineated in a straightforward manner because these are controlled by a 
single thermodynamic parameter. The simplicity of the small-disturbance equation 
also means that numerical solutions may be obtained efficiently and cheaply even in 
the far field. 

The results presented here will include the prediction of large increases in the 
critical Mach number and reductions in the strength of compression shocks occurring 
in supercritical flows. These results strongly suggest that there are significant 
gasdynamic advantages in the use of BZT fluids in turbomachinery. The most 
appropriate applications appear to be closed systems referred to  as organic Rankine 
cycles. These systems routinely exploit the advantageous thermodynamic properties 
of heavy hydrocarbons and fluorocarbons of the same general type as the BZT fluids 
identified by Lambrakis & Thompson (1972), Thompson & Lambrakis (1973), and 
Cramer ( 1 9 8 9 ~ ) .  

2. Formulation 
We consider the steady, inviscid, two-dimensional flow over a single turbine blade 

or airfoil as sketched in figure 4. The flow far ahead of the blade is taken to  be 
uniform at speed Urn, density pm, and entropy 5,. The coordinate system is taken so 
that the positive x-axis is aligned with the free-stream velocity. The chord and 
maximum thickness of the blade or airfoil are taken to  be L and EL so that the blade 
surface can be written 

y = ELF* (x/L) for -a ,< x / L  ,< $, (2.1) 
where the signs refer to  the upper and lower surfaces and F* are taken to be 
sufficiently smooth functions of x/L. The thickness parameter E will eventually be 
taken to be small. 

Because the free stream is uniform and steady and viscous effects are neglected, 
the only source of entropy gradients are those generated by shock waves. Cramer & 
Kluwick (1984) have shown that the entropy rise is of fourth, rather than third, order 
in the shock strength whenever (1.10) holds. I n  the following i t  will be shown that 
this fact permits us to ignore the entropy variations, even though higher-order 
approximations are required. Furthermore, the relatively weak entropy jump leads 
us to expect that  the vorticity generated at  the shocks is also negligible. Thus, we will 
take the flow to be irrotational, at least to the approximation required here. Once the 
appropriate scalings are determined, Crocco’s theorem may be employed to give an 
a posteriori justification of this approximation. 

The boundary-value problem governing this irrotational flow may therefore be 
written 

(2.2) 

$, = E $ ~ F * ’ ,  on y = ELF’ for -a < x / L  < t ,  (2.3) 
Vq5+Umi as x2+y2+0o,  (2.4) 

(G - 4 $m + 2$z $y $zy + ($; -4 +yy = 0, 



204 M ,  S.  Cramer and G .  M .  Tarkenton 
Y 

-5 I X 

FL+ 
FIGURE 4. Sketch of typical wing or turbine blade and coordinate system. 

where $ is the velocity potential defined so that u = Vq5 is the fluid velocity, 
F’’(5) = dE”/d[ and a(p, s) is the t,hermodynamic sound speed given in (1.2). The 
first equation is recognized as the two-dimensional version of the exact potential 
equation. The second is the kinematic boundary condition a t  the blade and the third 
requires that the disturbances vanish far from the blade or wing. The disturbances 
in the sound speed will be related to those in $ by the Bernoulli equation for steady, 
isentropic flow, i.e. 

(2.5) 

where h,  = h(pm,sm)  is the enthalpy. Again we note that the assumption of 
iscntropic flow implicit in (2.5) will be valid to fourth order in the pressure or density 
disturbance. 

In  the next section it will be convenient to employ a non-dimensional form of 
(2.2)-(2.5). We therefore introduce the following non-dimensional variables : 

h(p, 8,) = h, +i(px - IV$l*), 

where $ = $(z, 8) is the non-dimensional disturbance potential and a ,  = a(pm, .sm). 
Substitution of (2.6) in (2.2)-(2.5) yields 

(M:+2Mk h + M 2 , ~ - ~ z ) & z Z X + 2 M 2 , ( 1 + ~ z ) ~ , ~ ~ ,  = ( ~ Z ’ - M : @ ) $ ~ ~ ,  (2.7) 
- 

with $ , = ~ ( I + & ~ ) F * ’  on ~ J E J ”  for - i < z < t ,  (2.8) 

FZ,$,+o as &‘+jj*+co, (2.9) 

(2.10) 

Equations (2.7)-(2.10) are recognized as the counterparts of (2.2)-(2.5), respectively. 

3. Derivation of the transonic small-disturbance equation 

now formally require the wing to be thin, i.e. 
In  order to derive the approximate form of the exact equations presented in $2, we 

E 4 1,  (3.1) 

the disturbances caused by i t  to be small, i.e. 
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and the flow to be nearly sonic, i.e. 

pk!2,-lI < 1. (3.3) 

Conditions (3.1)-(3.3) are just those of the classical transonic theory. As pointed out 
in $ 1 ,  we will also employ (1.10) in order to determine the approximation in the 
vicinity of the r = 0 locus. In  the following development we will derive only the 
lowest-order version of the r x 0 equation. 

We begin by deriving the approximate relation between the non-dimensional 
sound speed a and the perturbations in 6. A straightforward Taylor series expan- 
sion of h(p,s) and a(p ,s )  for small (p-p,) /p,  and use of the assumption that 
s-s, = O ( P - ~ , ) ~  yields 

(h-h,)/a2, = p - w + O ( p 3 ) ,  (3.4) 

(3.5) a2 = az/aL = 1 - 2 p + 2 @ + ( A + 3 ) p + O ( F ) ,  

where 

The quantity A is the second (cubic) nonlinearity parameter introduced by Cramer 
& Kluwick (1984). This parameter was also introduced by Hayes (1966) in the 
context of higher approximations to the classical theory. It is also useful to note that 
the terms involving r a n d  A + 3  are both of order p" due to (1.10) and (3.6). In  the 
derivation of (3.4)-( 3.5) we have also employed Gibbs' equation 

1 

P 
dh = Tds+-dp, 

where T is the absolute temperature, along with (1.1)-(1.2), to show that 

and 
aa2 ah a2h a2a2 a2h a3h 
- = - + p y ,  ~ = 2-+p-.  ap ap ap apz apz ap3 

We now substitute (3.4) in the exact Bernoulli equation (2.10) to yield 

p = $P-M", ($5E+@+@g)+o(p"). (3.9) 

At this stage it is necessary to determine the relative sizes of the and 
derivatives. Here we will take 

which implies 

( 3 . 1 0 ~ )  

(3.10b) 

The scalings (3.10) can be motivated by requiring that our resultant transonic 
equation reduces to the usual wave equation 
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when all nonlinear terms are neglected. Alternatively, one can examine the exact 
characteristic relations for supersonic flow. 

When (3.10) is applied to (3.9) we find that 
- - 

p z -M% 4% z -#z, (3.1 1 )  

to lowest order, which, as one might expect, is identical to the corresponding relation 
of the classical theory. Thus, p ,  r, and $z are all of the same order of magnitude. We 
may now rewrite (3.9), and consequently (3.5), as follows: 

p =  - & + ~ + o ( ~ , M 2 , - 1 ) ,  (3.12) 

a'L = 1 + 26% - 2r$% + ( A  + 1 )  g + o( g, w, - 1 ). (3.13) 

I n  a like manner, the coefficient of the $xz term in (2.7) may be approximated by 

M % - 1 + 2 r $ 2 - A ~ + 0 ( ~ , M ~ - 1 ) .  

Ifwe now retain only the lowest-order contributions to each term in (2.7) we find that 
the potential equation may be approximated by 

(M: - 1 + 2r$% - A& $%% + 2& q$Eg z $gg. (3.14) 

If we make use of (3.10), we find that the nonlinear term 

- .  
from which we conclude i t  may be neglected relatGe to the Tgg term. Because of our  
assumption (l.iO), we conclude that the nonlinear terms in the coefficient of $zz in 
(3.14) are both of order = O(p'L) and one cannot be neglectcd or retained without 
the other. We now make the reasonable assumption that the nonlinear terms arising 
from those in the coefficient of $EE are in balance with the linear terms appearing in 
(3.14). If the nonlinear terms were negligible, thcn (3.14) reduces to the linear wave 
equation and there would be no mechanism for thc change in wave type characteristic 
of transonic flow. If the nonlinear terms dominate, the $yy = 0(( 1 -M:) $%,) term 
must be neglected and the governing cquation involves only derivatives with respect 
to Z. As a result, the boundary conditions a t  the wing and infinity cannot be satisfied 
simultaneously. Thus, 

6% = O(P)  = O ( T )  = O(ll-M",1") = o(1) 

& = O( 1 - M % )  = o( l) ,  
- 

and, from (3.10), 

(3.15) 

(3.16) 

and the exact boundary value problem (2.7)-(2.9) may be approximated by 

(M; - 1 + zi& - A& gzz = Jgg, (3.17) 

$gx~F*', on y x 0  for - i < z < f ,  (3.18) 

$ z , $ g + O  as E ~ + ~ ' + c o .  (3.19) 

In (3.18) we have employed the usual thin-wing approximation 

Once (3.17)-(3.19) are solved, $((x,Y) may be employed to compute the pressure 
coefficient 

(3.20) 

where a straightforward Taylor series for p = p(p, s) and (3.11) have been employed. 



Transonic flows of Bethe-Rel'dovich-Thompson fluids 207 

The size of the density, pressure, and velocity perturbations relative to the 
thickness parameter may be determined by combining (3.16) with (3.18). Thus, 
1 -M2, = O(e), and the size of each physical quantity may be summarized as follows 

(3.21 a) 

p;- 11, f& = O(E). (3.21 b )  

That is, when (1.10) holds, the nonlinear terms seen in (3.17) are no longer negligible 
only when p2, - 1)  = O ( B ) .  Because r = o(l) ,  the term TFE in (3.17) is 6 c$~, higher- 
order nonlinear terms correctly neglected in the r = O( 1 )  theory are of the same size 
as r$z. The preceding analysis demonstrates that the only additional term is the 
quadratic term A q i  seen in (3.17). 

As discussed in 9 1 ,  the relatively weak nonlinearity of the small-r case results in 
a delay of the onset of the nonlinear effects characteristic of transonic flow. That is, 
the transonic range is narrowed when the intrinsic nonlinearity is weak. This is 
particularly evident when we compare the results summarized in (3.21) to  those of 
the r = 0 ( 1 ) ,  i.e. classical, theory where both cp and w2, - 11 are of order 8. The 
transonic range of the present theory is seen to be an order of d smaller than that of 
the classical theory. The resultant pressure coefficient is an order e-) larger than that 
of the classical theory. We would naturally expect this effect to lead a comparable 
increase in the lift found in subcritical flows. 

The increase of the size of c, is to  be expected in the light of the decrease in the 
extent of the transonic regime. I n  essence, this increase is due to  the Prandtl-Glauert 
singularity. For example, we could have anticipated this result by consideration of 
the well-known Prandtl-Glauert scaling law 

Cpinc c =  
(1-M2,);' 

(3.22) 

where c, is the pressure coeficient at M ,  and cpinc is the incompressible (M,  = 0) 
coefficient. If we take cpinc = O ( E )  and employ (3.21 b ) ,  we find that (3.22) yields 

c p  = O(€&), 

which is in complete accord with (3.21a). 
A second route to the determination of the boundary-value problem (3.17)-(3.19) 

is through use of the well-known method of matched asymptotic expansions ; see e.g. 
Kevorkian & Cole (1981) or Cole & Cook (1986). Here the small-disturbance 
parameter would be taken to be 6. Condition (1 . lo) is then enforced by taking 6 + 0 
with i='e-; fixed. When this more systematic approach is employed, it is found to be 
in complete agreement with results presented here. 

We conclude this section with a few remarks concerning the nonlinearity 
parameters P and A .  Formulae suitable for the calculation of 7 from p ,  V ,  T data 
have been given by Bethe (1946), Lambrakis & Thompson (1972), and Cramer 
(1989a). Analogous formulae for the calculation of A are given by Cramer (1987). 
Because A is just a non-dimensional version of the slope of the r us. p curve, it is 
necessarily positive near the high-density zero of r and is necessarily negative near 
the low-density zero. Although must be evaluated a t  the actual free-stream state, 
A may be approximated by its value at the r = 0 point with no loss in accuracy. That 
is, A may be computed from the slope of the r us. p curve evaluated exactly a t  
r = 0. If we confine our attention to a single isentrope in the neighbourhood of one 
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Fluid 

pf-tributylamine (FC-43) 

pf-tripentylamine (FC-70) 

pf-trihexylamine (FC-7 1 )  

pf-perhydrofluorene (PPlO) 

pf-perhydrophenanthrene (PPl1) 

pf-fluoranthene (PP24) 

pf-benzyltetralin (PP25) 

T 
Formula (K) 
ClZFZP 566.5 

562.9 
ClJ33N 609.5 

606.2 
C,,F,,N 649.1 

646.3 
C13FZ2 631.4 

626.1 
Cl4F24 651.7 

647.5 
C16F26 704.9 

700.5 
C,,F,Ll 681.9 

678.9 

P 
(atm) 
10.9 
10.0 
10.1 
9.2 
9.4 
8.5 

15.7 
14.1 
14.4 
13.0 
15.3 
13.7 
11.0 
10.2 

A 

2.3 
- 1.0 

2.9 
- 1 . 1  

2.7 
- 1.2 

3.0 
- 1.2 

2.6 
-1 .1  

3.5 
- 1.3 

1.3 
-0.8 

TABLE 1.  Computed values of A for various fluids. The manufacturer's designation is given in 
parentheses after the chemical name. For each fluid, the upper thermodynamic state corresponds 
t o  a high-pressure zero of r. The lower state is the low-pressure zero on the same isentrope. 

zero or the othcr, we may regard A as fixed, while may be varied by choosing 
different states along the isentrope. The fact that and A may be varied 
independently will be employed in the following sections. 

Numerical estimates for A may be obtained through use of the general formulae 
given by Cramer (1987) or by numerical approximation of the derivative in (3.6). In  
the present study we take the latter approach. We first computed r along an 
isentrope by the scheme already employed by Cramer & Best (1991). If a zero in r 
was encountered, a simple centred-difference approximation was employed to 
estimate A .  The difference formula was centred about the zero so that the value of 
A is that a t  r = 0. The equation of state is the Martin-Hou (1955) equation with a 
power-law specific heat a t  constant volume. The fluids chosen are a selection of 
commercially available fluorocarbons currently employed in heat transfer appli- 
cations. For a more detailed account of the fluid properties and implementation of 
the Martin-Hou equation, we refer the reader to the articles by Cramer ( 1 9 8 9 ~ )  and 
Cramer & Best (1991). 

Typical values of the pressure, temperature, and values of A a t  zeros of r are 
recorded in table 1. For each fluid two states are given, corresponding to high- and 
low-pressure zeros on the same isentrope. In each case, the isentrope chosen is that  
passing through the point V = 0.7E, T = 1.02T,, where V = p-' is the specific volume 
and the subscript c denotes values a t  the thermodynamic critical point of the fluid. 
Calculations with other fluids and other thermodynamic states show that the results 
given here are typical in that the value of A a t  the high-pressure zero ranges from 
about 1 to 4 and from -0.5 to -2.5 near the low-pressure zero. 

Finally, we note that the local value of r varies from point to  point in the flow. 
In the context of the present theory, we approximate this quantity as follows: 

r,(p) x r+ Ap+ o ( p )  x r+ ~ A c ,  + o(cP) ,  (3.23) 

where (3.20) has been employed. 
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4. Similitude 
Analytical solutions to (3.17)-(3.19), easily applied to configurations of practical 

interest, are currently not available. It will therefore be useful to determine any 
similarity parameters for these flows. Here we will apply the following scalings to 
6, z,y: 

where ~, 6 , ~  are order-one scaled variables. The use of the absolute value of i= in the 
scalings for f j  ensures that 7 > 0 whenever y > 0. If (4.1) are substituted in 
(3.17)-(3.19) we find that $(E,q) is governed by 

+c.f, +,, + 0 far from the blade, (4.4) 

where K ,  = ( 1  --M:)/(€r):, (4.5) 

K 2 -  = A $ / F + ,  (4.6) 

and sgn (0 denotes the sign of r. The quantity K,  is recognized as a form of the usual 
transonic similarity parameter. The quantity K, is a second parameter arising from 
the presence of the second nonlinear term in (3.17). The form (4.2)-(4.6) is 
particularly convenient because it reduces to the classical result when = O(1). In  
that case, K ,  = O($) and the second nonlinear term in (4.2) may be neglected. The 
condition for K,  = 0(1) is then the classical one, i.e. 11-M2,( = O(d).  

When (4.1) are applied to (3.20), the pressure coefficient is found to be 

c p  = -2(€:/r:)&, (4.7) 

E p  = - 2?& = O( l ) ,  

we have c p  = (€!/Ti) E p  . (4.9) 

or, if we define (4.8) 

By combining (4.9) with (3.23) we also find that the local value of may be written 

F, = F( 1 + ~&,CP). (4.10) 

Our scaled equations (4.2)-(4.4) indicate that two flows over the same wing or 
blade profile are self-similar if the sign of F is the same for each flow and the 
similarity parameters K ,  and K, have the same value in each flow. From the form of 
the above boundary-value problem and the definition (4.6) it is immediately obvious 
that similarity may be obtained only if F and A are of the same sign in each flow. 
That is, a change in sign either of i= or A gives rise to qualitative changes in the 
general flow pattern. The fact that P > 0 and F < 0 flows are qualitatively different 
is to be expected. We may motivate the observation that A > 0 and A < 0 flows are 
fundamentally different by considering a F > 0 flow with A < 0. From (3.23) or (4.10) 
we see that the local value of in regions of expansion, i.e. c p  < 0, will remain 
positive. However, if A > 0 such regions may result in > 0, thus giving rise to 
fundamentally different nonlinearity. 
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Another advantage of the scalings used here is that the effect of changing the sign 
of is immediately clear. Because K ,  and K ,  are invariant with respect to such sign 
changes, a change in sign of is equivalent to replacing the wing shape F '(x) by 
- F * ( E ) .  That is, a hump (dip) in a > 0 flow over a dip 
(hump), provided K ,  and K ,  have been matched. As an example, we note that we 
may use our intuition pertaining to r > 0 and A = 0 flows to immediately deduce the 
flow when r < 0, A = 0. I n  particular, the well-known fact that  a > 0, A = 0 flow 
over a dip is entirely subsonic and therefore shock-free may be used to conclude that 
a r < 0, A = 0 flow over a hump, i.e. airfoil configuration, will also be entirely 
subsonic and shock-free. 

In  the theory of perfect gases, r > 0, A is ignored, and the critical Mach number 
is characterized by a single number K , ,  which is just the value of K ,  at the critical 
Mach number. I n  the present theory, the occurrence of the second and third 
similarity parameters means that 

< 0 flow is similar to a 

K,, = K,, (K , ,  sgn 0, 
which is recognized as significantly more complicated than the condition of the 
classical theory. 

5. Mach number variation 
In this section, we analyse the variation of the Mach number with density or 

pressure as predicted by (3.17)-(3.19) or (4.2)-(4.4). To begin we consider the square 
of the particle velocity expressed in terms of the disturbance potential 6 given in 
(2.6). It is easily verified that this reads 

v2=  u;{1+2$3++++;}, 

exactly. The Mach number M = v / a  may therefore be written 

M 2  = M2,{ 1 +2$E+& +g}/a". 
If we employ (3.13), we find 

K2 = 1-2$z+2T$z+(3-A)&+~($:), 

which, when combined with (5.1) yields 

M 2  =M:{l +2T$E-A&+~(G)} ,  

where the fact that $g 6 $z has been employed. Thus, the local value of M may be 
expressed : 

which, when combined with (3.17), yields a third form of the governing boundary- 
value problem : 

M2-1 = M 2 , -  1 +2r$hE-A&+0(&,M&-1), (5.2) 

(M2--1)$Ez=$gg, (5.3) 

c j $ g = E F * ' ( ~ )  on ~ x O  for -;<z<: (5.4) 
$g + 0 far from the wing, (5.5) 

where (5.4) and (5 .5)  are identical to (3.18) and (3.19) but repeated here for 
completeness. As in the classical theory, (3.17) and (5.3) change type as the local 
value of M 2 -  1 changes sign. 
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c, 

i - 4 - 2  0 2 4 6 8 1 0 1 2  

c,l~'l"/E" 

FIQURE 5.  Plot of scaled Mach number variation with the scaled pressure coefficients according 
to (5.4). Here K ,  = 2.5 and (a )  r>  0, ( b )  r< 0. 

The variation of the Mach number with pressure is found if (3.20) is employed to 
replace $z by c p  in (5.2). If, in addition, the scalings (4.1) and (4.9) are employed, we 
find that (5.2) may be rewritten as 

(5.6) 
- 2  

(M2- l ) / (C)s= -K  1 -8 p -'K 4 2 P '  c"L 

A plot ofM2- 1 us. E p  has been provided in figure 5 for the case K ,  = 2.5 and various 
values of K,.  Because the sign of E p  depends on the sign of r, separate plots of the 
r > 0 and r < 0 cases have been made. Each curve is recognized as a parabola. If 
(5.3) is differentiated, it is easily demonstrated that 

(5.7) 

= -rl/r, (5.8) 

where (4.10) has been employed. Thus, the maximum or minimum of each parabola 
occurs a t  

-, 2 or, equivalently, rl = 0. 
C p m  = -- 

K2 
(5.9) 

The fact that the extrema of M occur where the local value of r changes sign has also 
been found in the analysis of the dissipative, albeit nearly isentropic, structure of 
shock waves in BZT fluids. 

To illustrate the relation between the present small-disturbance theory and the 
exact isentropic theory we have sketched the Mach number variation of both models 
in figure 6. In each case, the curves based on the small-disturbance theory correspond 
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FIGURE 6. Comparison of the exact and approximate Mach number variations. The dashed line 
denotes the exact M m. p relation and the solid line denotes that  employed in the present 
investigation. 

to i= > 0. It is seen that the K ,  < 0 branches in figure 5 correspond to the local 
minimum in M seen in figure 3. The K ,  > 0 branch corresponds to the local 
maximum. 

The Mach number variation used in the present investigation is seen to be 
completely consistent with thc cxact variation. provided the small-disturbance 
assumption is satisfied. If, in a particular flow, this assumption is violated, the 
present theory may not yield results which are in qualitative agreement with the 
actual dynamics. Inspection of figure 6 shows that compressions large enough to 
violate the small-disturbance approximation give rise to qualitatively incorrect 
behaviour when K ,  < 0. Large expansions also yield qualitatively incorrect results 
when K ,  > 0. This contrasts with the perfect gas theory where the qualitative 
behaviour is, for the most part, correct even when the small-disturbance 
approximation breaks down. 

The most common failure of the small-disturbance approximation is a t  blunt or 
pointed leading edges and a t  pointed trailing edges of conventional turbine blade or 
wing configurations. At such points c p  becomes of order one and positive. In this case, 
we expect that the flow details in the region of large c p  will not be representative if 
K ,  < 0. From figure 6 i t  should be clear that the Mach number will initially increase, 
and may even exceed one, as the pressure increases. However, the Mach number will 
ultimately decrease once c p  becomes of order one. This initial increase followed by a 
decrease is qualitatively similar to the K ,  > 0 branch although the free-stream Mach 
number or, equivalently, the stagnation pressure, differs for each branch. Because we 
expect the regions of large c p  to be small, we would naturally expect the region of 
disagreement between the present and exact theories to be localized as well. To test 
these and other difficulties, the present authors have developed a higher-order theory 
analogous to the extended perturbation scheme found in $ 5  of the article by Cramer 
& Crickenberger (1991). The results of that study will be reported in future 
publications. 
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6. Estimates for the critical Mach number 
In any transonic flow, sonic points and the critical Mach number H, play a central 

role. I n  the classical theory, one and only one sonic point can be attained in a 
continuous expansion or compression. If r > 0, then sufficiently strong expansions 
give rise to  supersonic flow whereas compressions may result in supersonic flow if 
r < 0. In the non-classical ( A  + 0) theory, either two sonic points or none are 
possible. If we set the local Mach number equal t o  one in (5.6) and solve the resultant 
quadratic for E p ,  we find that the sonic points arc given by 

K,K, = A ( l - M k ) / P  < 1 ,  (6.2) 

where (4.5)-(4.6) have been employed. In  this section, we first consider only flows 
having subsonic free streams. At the low-density zero of r, A < 0 and (6.2) is 
therefore always satisfied. This case corresponds to the K ,  < 0 curves found in figure 
5. In this case, the number of sonic points which will be observed in a particular flow 
will depend on the size of the disturbance generated by the wing or blade. Here we 
note that both compressions ( c p  > 0) and expansions ( c p  < 0) may give rise to 
supersonic flow. In both the r < 0 and r > 0 cases, i t  appears that  sonic conditions 
are obtained a t  smaller values of Jcpl than in the classical case. In  this case, i t  seems 
likely that the critical Mach number will be decreased by the non-classical effects, a t  
least for a fixed value of F. 

Near the large-density zero of r, A > 0 and the condition (6.2) may or may not be 
satisfied, depending on the size of 1-M2,. In particular, the flow remains entirely 
subsonic, regardless of the size of the disturbance, if 

M ,  < ( l - ( F / A ) ) ; z  l-$Tz/A. (6.3) 

This conclusion is in marked contrast with the classical ( A  = 0) theory where 
increases in the strength of the disturbance will ultimately always drive the flow 
supersonic. It can also be noted that the criterion (6.3) only depends on the 
thermodynamic state of the free stream. Thus, knowledge of the free stream 
immediately yields a sufficient condition on the Mach number for the generation of 
a subcritical flow without regard for the wing shape. 

We now provide numerical estimates for the critical Mach number. I n  the 
remainder of this section, we restrict our attention to  the case where r > 0, A > 0. 
This case is of particular interest because it is most likely to give rise to  the maximum 
critical Mach number. For the purposes of demonstration, we take the general 
measure of the disturbance and the free-stream thermodynamic state to  be fixed. 
Thus, 6, r, A ,  and K ,  may be regarded as fixed. 

In the following we will employ the Prandtl-Glauert scaling (3.22) in order to 
account fOT the specific blade characteristics. This scaling law is, of course, based on 
the linear theory and only provides an approximation to the actual pressure 
distribution at critical conditions. However, it is widely employed in the perfect gas 
theory, see e.g. Anderson (1990), and will therefore provide a convenient method of 
illustrating the differences between BZT fluids and lighter substances. With this in 
mind, we will write the minimum value of E p  as 

Eppmin = c p 0 / ( & i ) .  (6.4) 
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Here the quantity cpo is the minimum value of c p  for the same blade, albeit in an 
incompressible flow. Because the incompressible flow is governed by linear equations, 
c p O / e  is a pure number characteristic of the specific wing or blade shape. 

It is expected that the flows will begin at  the free-stream condition, and undergo 
a compression ( c p  > 0 )  as the leading edge of the blade or wing is approached. The 
flow then expands ( c p  < 0) over the top of the blade or wing. This, of course, is similar 
to the behaviour of perfect gases. Inspection of figure 5 ( a )  reveals that it is in this 
expansion region where the supersonic flow will be generated, a t  least in the example 
discussed here, i.e. r> 0,  A > 0. We therefore conclude tJhat the sonic point of 
interest is the larger of the two roots in (6.1), i.e. 

Epsonic = ( 2 / ~ , )  { - 1 + (1 -K,K,)'I. (6.5) 

Straightforward differentiation of (6.5) reveals that Epspsonic decreases monotonically 
as K ,  increases. We therefore obtain the expected result that the strength of the 
expansion required to accelerate the flow to a supersonic state must increase as M ,  
decreases from one. 

It can be shown that two cases are of interest. The first holds for relatively small 
K ,  and, as one expects, yields a criterion similar to that of the classical theory. At 
sufficiently small values of M,, inspection of (6.4)-(6.5) reveals that Epmin > Fpsonic, 

or because E p  < 0, 

As M ,  is increased, Kl will decrease, thus resulting in a monotonic increase in JEppminJ 
and a monotonic decrease in IEpsonicl. Ultimately, 

IEpminI < IEpsonicl. 

IEpsonicl < IC"pminl. 

If we assume that the local value of M decreases with increasing E p ,  the above 
condition necessarily implies that the flow is supersonic. As in the classical theory, 
the criterion for the critical Mach number will then be 

The critical Mach number is found by solving (6.6) iteratively for K, with K, fixed. 
It is easily demonstrated that one and only one root of (6.6) exists provided 

(6.7) 0 < K ,  < K2crit 

where K,,,, = ( - 2e/cP0)f. (6.8) 

Later in this section it will be shown that (6.6) is no longer the correct criterion when 
(6.7) is violated. 

To contrast this case with that corresponding to larger values of K,, we have 
plotted the Mach number variation with E p  for various values of K, and a fixed K ,  
in figure 7 ( a ) .  In the case shown, K, = $ and cpo = - 4 . 5 ~ .  The value of cpo is in the 
general neighbourhood of that of a circular-arc airfoil with half-thickness e. The 
values of EPmin, as computed by (6.4), are denoted by circles. Inspection of figure 7 
reveals that the critical value of K,, hereinafter denoted by K,,, is between 1.5 and 
2.0. This observation is in complete agreement with iteration of (6.6), the result of 
which yields K,,  % 1.93. 

The key assumption leading to the criterion (6.6) is that the Mach number must 
be a decreasing function of E p ,  particularly near the point where Eppmin = Epsonic. An 
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FIGURE 7 .  Plots of Mach number us. E p  for (a) K ,  = + and ( b )  K ,  = 5, and > 0. The open circles 
denote the minimum value of the pressure coefficient if the minimum c p  in an incompressible flow 
is -4.56, as computed from (6.4). 

example of the failure of this assumption is seen in figure 7 ( b )  where the Mach 
number variation with EP is plotted for various values of K ,  and K ,  = 8, cpo = -4&. 
The wing or blade is recognized as identical to that of figure 7 ( a )  but K ,  is slightly 
larger. In  figure 7 ( b )  it is seen that Eppmin becomes less than the E p  corresponding to 
the local maximum in the Mach number when K ,  is between 2.0 and 2.5. The precise 
value of K,  a t  which this occurs can be computed by equating the expression (6.4) 
for Eppmin to  the expression (5.9) for the E p  a t  which the local Mach number has an 
extremum. After minor rearrangement and use of the definition (6.8), the resultant 
expression reads 

K ,  = K W 2 , r i t ) 3 .  (6.9) 

If we substitute our value of cpo in (6.8), we find that K,,,,, z 0.582 and that 
Epmin > - 2/K,  if and only if K ,  > 2.25. This is in complete agreement with the results 
depicted in figure 7 ( b )  where the transition is seen to occur at a point between 2.0 and 
2.5. 

In  the example just discussed, the minimum-pressure point lies to  the left of the 
local maximum in M and it is clear that  part of the flow can become supersonic while 
the minimum-pressure point still corresponds to subsonic flow. As a result, condition 
(6.6) is no longer appropriate. When this is the case, the sonic points first occur when 
the maximum Mach number becomes equal to  one. Thus, the appropriate criterion 
is 

K,,  = l / K , .  (6.10) 

The precise condition under which (6.10) must replace (6.6) is obtained by requiring 
that 

Epmin < -2/K2 

at K ,  = K;l.  If we make use of (6.4) and (6.8) and rearrange, we find that (6.10) holds 
whenever 

K2 > Kmit * (6.11) 

Finally, we note that the critical Mach number corresponding to (6.10) is 

M ,  = ( l - ( P / A ) , b  l - i P / A ,  (6.12) 

which is, of course, similar to (6.3). 
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FIGURE 8. Computed values ofthe critical K, for blades having cpO/c  x -3.50, -4.85, -5.50, and 
-6.88, where cpo is the minimum pressure coefficient in an incompressible flow over the same blade. 
The second and fourth values correspond to a circular-arc airfoil and a NACA OOXX of half- 
thickness F at zero angle of attack. 

At this stage two observations can be made. The first is that the critical Mach 
number becomes independent of the geometry of the wing or blade when (6.11) is 
satisfied. A more significant point with respect to applications is that Me+ 1 as 
r+O. Thus, it appears that subcritical flow may be maintained up to arbitrarily 
large values of M ,  (< 1)  simply by adjusting the thermodynamic state of the free 
stream arbitrarily close to  a r= 0 point. 

The conclusion that M ,  + 1 as r+ 0 is based on the assumption that (6.11) holds. 
It is easily demonstrated that the same limit, i.e. r+O, will always result in (6.11) 
being satisfied. If, for example, we fix the blade shape and consider a sequence of 
states on a particular isentrope, then KPcrit, e, and A can be regarded as fixed. 
Inspection of (4.6) shows that K ,  will increase monotonically as r-r 0. Because KZcrit 
is fixed (6.11) will ultimately be satisfied regardless of the initial state. 

To illustrate the variation of K,, we have plotted this quantity versus K ,  in figure 
8. The only input required is the parameter c p O / e  which characterizes the blade 
shape. The largest value of Icpo/.l was computed from data for a NACA 0012 airfoil 
a t  0" angle of attack and, within the context of a small-disturbance theory, should 
be applicable to any of the airfoils in the NACA OOXX series. The value of 
cpo z -4.8% was computed from data for a circular-arc airfoil of half-thickness E .  

For reference we have also included the K,, = K,' curve as a dashed line. As 
expected, solutions to (6.6) depend on the details of the wing or blade shape. Non- 
similar blades will therefore have different values of K,, and the critical Mach 
number M,. However, once condition (6.1 1)  is attained, the critical similarity 
parameter and critical Mach number no longer depend on the details of the wing or 
blade. In figure 8, this is seen as the ultimate coalescence of the curves with the 
K,, = K;' curve. From (6.12) we may also observe that the critical Mach number will 
only depend on the thermodynamic state of the free stream when K ,  > K,,,,. 

As an illustration of the possible increases in the critical Mach number of BZT 
fluids, we have estimated M ,  for the flow of air, steam, and PP11 over a NACA 0012 
airfoil at 0" angle of attack. Thus, we have taken cpo z -0.41 and E = 0.06. The free- 
stream temperature was taken to be 653 K which is slightly above the critical 
temperatures of steam and PP11. For the present purposes, the perfect gas model 
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Air 653 low 1.20 0 3.6 0.61 
Steam 653 low 1.15 0 3.6 0.63 
PPl l  653 14.6 0.25 0 3.6 0.88 
PP11 653 14.6 0.25 2.6 0.4 0.988 

TABLE 2. Comparison of critical Mach numbers for a NACA 0012 airfoil. Values of pm r J a ,  for air 
and steam were computed using (1 .7)  with the ratio of specific heats taken to be the value at 
653K. The value for PPl l  was computed using the Martin-Hou (1955) equation of state. 

will give a reasonable estimate of the value of r for air and steam. Because r = O( 1) 
for both air and steam, the classical ( A  = 0) theory was employed to estimate the 
critical value of K,.  This yields 

K, ,  = ( c p o / c ) ;  z 3.6. 

The thermodynamic state of the PPl l  was taken to  be along the same isentrope as 
used in table 1.  As a result, we may take A x 2.6. The results are listed in table 2. 
Even in the classical theory, we expect M ,  to increase if the intrinsic nonlinearity 
parameter pT/a becomes small. The magnitude of this increase is seen by comparing 
the A = 0 calculation for PPl1 to that for air and steam. However, when the correct 
value of A is employed even larger increases in M ,  are observed. The critical Mach 
number for PPl l  is seen to be over 50% larger than that for steam flowing at the 
same free-stream temperature over the same blade. Even more significant for 
applications is the increase in the Prandtl-Glauert factor (1  -ME)-;. For PPl l  this 
factor is found to be approximately five times larger than that for steam. If similar 
advantages carry over to lifting airfoils, and we have no reason to think that they 
will not, the lift coefficient appears to be increased by a factor of five simply by 
replacing steam by PP11. We note that these benefits occur with no increase in drag. 

These predictions are, of course, based on the small-disturbance theory developed 
in the preceding sections. Inspection of figures 3 and 6 show that the qualitative 
variation of the Mach number is the same as that predicted here over a considerably 
wider range of densities. Thus, even if the small-disturbance assumption is violated, 
the upper bound on the local Mach number will result in critical Mach numbers 
approximately equal to those predicted here. However, inspection of the same figures 
reveals that the theoretical limit ofM, = 1 will never be achieved in real BZT fluids. 
The reason for this is that  the amplification of the disturbance due to  the large 
subsonic Mach numbers can drive the minimum pressure below that corresponding 
to the local minimum in M and ultimately below that corresponding to  the low- 
pressure sonic point. Thus, the critical Mach number will always be limited to a value 
less than one. This conclusion is in complete accord with our intuition. The precise 
limit on the critical Mach number will require a more general model for the Mach 
number variation. However, a quick estimate of the effect of this limit can be 
obtained through use of the numerical scheme presented in the following sections. If 
we again consider a NACA 0012 airfoil with r = 0.25, A = 2.6, we find that the 
minimum value of p is about 0 . 4 7 ~ ~  and the maximum value of M is approximately 
0.96 when M ,  = 0.95. If this minimum density is compared to  the values along the 
exact isentrope, we find that the point of minimum pressure and density is just a t  the 
low-pressure zero of r. I n  turn, this should approximately correspond to  the local 
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minimum in the Mach number seen in figures 3 and 6. Based on this crude 
calculation, it appears that the critical Mach number is still above 0.95. Further 
estimates of the same type suggest that  M ,  x 0.96 for this case. It should also be 
noted that tests with different fluids or airfoils having more slender cross-sections 
yield similar increases in the critical Mach number and the Prandtl-Glauert 
amplification factor. We therefore conclude that the general magnitude of the 
increases predicted by the present theory are reasonable ; the determination of more 
precise values is left for future studies. 

7. Numerical scheme 
In  order to obtain detailed solutions to  systems (3.17)-(3.19) and (5.3)-(5.5) it is 

necessary to develop a numerical approximation scheme. In  the present investigation 
we employ a version of the well-known method of Murman & Cole (1971); see also 
Murman (1973) and Fletcher (1988). For illustration, we restrict our attention to  
symmetric wings or blades a t  0" angle of attack. Thus, only the half-plane problem 
will be considered in this preliminary investigation. The boundary-value problem 
will therefore be modelled by 

& =  0 on y =  h, (7.3) 
- 

q5z=0 on z =  k i W ,  (7.4) 

where (7.2)-(7.3) are recognized as the usual Neumann boundary conditions applied 
on a finite box of total width W > 0 and height h > 0. Here we will find i t  convenient 
to include an artificial viscosity term on the right-hand side of the basic differential 
equation. The quantity v > 0 is the small artificial viscosity constant typically taken 
to have values between and 

The function F ' ( z )  = F+'(z)  is the scaled wall or wing slope. In  the following 
section, we select F(3)  from the following two configurations. The first corresponds 
to a circular-arc airfoil, in which case wc take 

1 - - 4 P  i f - i < E < i  
0 otherwise. 

F ( z )  = (7.5) 

For the second we employed a Gaussian hump having equation 

F ( Z )  = +e-az2 for all 14 < awl (7.6) 

where 01 = 41n2. The minus sign in (7.6) permits the use of a dip. Results for 
NACA OOXX cross-sections will also be reported. For these airfoil sections spline 
coefficients were determined from the data of Abbott & Doenhoff (1959), from which 
F(E)  and its derivatives could be computed at any point. 

Following Fletcher (1988), we cast (7.1) in conservative form 

where the flux functions are defined 
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The finite differencing of the flux functions is a straightforward extension of the 
method described by Fletcher (1988). The approximated form of the artificial 
viscosity term is obtained by using two successive applications of central differences 
on half-grids. The error analysis for the inviscid scheme has been studied extensively 
by Murman & Cole (1971) and Murman (1973), and we refer the reader to these for 
further details. 

The grid employed has a constant spacing on the wing and then decays 
geometrically out to the computational boundary in both the Z- and q-directions. 
The rate of decay is the same in both directions and ranges from 5 to 15%. The 
typical number of points distributed over the chord was 40. 

The resulting difference equation is found to be a cubic polynomial in r$t,j. At each 
fixed value of Z, or equivalently i, we invert the corresponding nonlinear system of 
equations using a fully implicit Gauss-Seidel line relaxation technique. We march 
from left to right in z with a complete sweep composing a single iteration. We then 
compute the L,-norm of the residuals and compare with the previous iteration’s 
norm. If this difference is less than a specified tolerance or a maximum number of 
iterations is reached, the iteration process is terminated, and we use this as the 
converged solution. The typical tolerance employed was between and low6 which 
required on the order of 4000-5000 iterations with 40 points on the wing. 

8. Numerical results 
To illustrate the ability of the numerical scheme to approximate the exact 

solutions to systems (3.17)-(3.19) or (5.3)-(5.5), we have computed the flow over the 
smooth hump or dip given by (7.6). The value of A was taken to be zero so that (3.17) 
or (7.1) reduced to the classical small-disturbance equation. The main point of these 
computations was to verify the similitude under changes in the sign of r. In  the 
following, we will take E = 0.03 andM, = 0.867. The first case considered corresponds 
to the flow of air ( P  = 1.2) over first a hump and then a dip. The computed pressure 
distributions have been plotted in figure 9. As expected, the acceleration of the flow 
over the hump gives rise to a region of supersonic flow which is terminated by a 
compression shock. When the lower sign in (7.6) is employed, the flow decelerates and 
the pressure increases in the centre portion (Z x 0) of the dip. As one expects, the flow 
remains subsonic everywhere. We then changed the sign of r and recomputed both 
solutions with the same grid, number of iterations, and other physical parameters. 
The results are plotted in figure 10. The flow over the hump now remains entirely 
subsonic and the flow compression over the dip results in a supersonic flow 
terminated by the expansion shock seen in figure 10 ( b ) .  By a more detailed inspection 
of the output, it  can be shown that the r > 0 flow over the hump (dip) is identical 
to the i= < 0 flow over the dip (hump), provided the sign change in c p  is taken into 
account. This is in complete agreement with the similitude described in $4. Further 
similitude studies involving A 9 0 were also carried out and result in the same 
general conclusion; namely, the numerical scheme at least appears to satisfy the 
symmetry structure inherent in systems (3.17)-(3.19) and (5.3)-(5.7), even when 
shocks are present. 

The results depicted in figures 9 and 10 are also consistent with Thompson’s (1971) 
remarks concerning the variation of the streamtube areas required to produce 
supersonic flow. In  particular, our results are consistent with Thompson’s 
observation that the streamtubes must form an anti-throat in order to accelerate a 
fi < 0 fluid to supersonic conditions. 

8 FLM 240 
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FIGURE 9. Plots of the scaled pressure coefficient for K ,  = 2.28, A = 0, and r > 0. Flow is 
over the Gausian (a) hump, (b)  dip, given by (7.6). 

In the next series of calculations, we examined the effect of the second 
nonlinearity coefficient on the flow details. The circular-arc cross-section (7.5) was 
employed and e ,  P,  M ,  were fixed a t  values of 0.02, 0.25 and 0.996, respectively. At 
A = 0, K , ,  z 2.86 and the classical theory predicts a supercritical flow. We then 
increased the value of A from zero to verify the assertion that the critical Mach 
number increases with increasing A ,  at  least in the r > 0, A > 0 case. The results are 
presented in figure 11. Figure 11 ( a )  depicts the A = 0 flow which is seen to be 
strongly supercritical with a large compression shock near the trailing edge. As A or 
K ,  is increased, the compression shock weakens and moves upstream. At K ,  = 0.52, 
the flow is seen to be shock-free. The Mach number distribution corresponding to this 
value of K ,  is plotted in figure 12 where it is seen that the flow is entirely subsonic. 
The appearance of the local maximum in M is evident a t  z z - 0.125 and 0.125. This 
local maximum was found to  be approximately 0.995. These results are, of course, 
consistent with those of $6. For example, inspection of figure 8 reveals that the point 
K ,  % 2.28, K ,  = 0.52 lies in subsonic region, i.e. K ,  > K,, (K,  = 0.52). 

We recall that the quantities r a n d  K ,  are fixed in the series of calculations leading 
to figure 11. Thus, the increase in M ,  is solely due to the non-classical effects. 
Although r > 0 in the free stream? the fact that A > 0 results in a decrease in the 
local value of r in the expansive portion of the flow. Ultimately, the local value of 
r becomes negative, which, according to (5.7)-(5.8), results in a decrease in the local 
Mach number upon further expansion. As long as the local maximum inM is less than 
one, the flow remains subcritical regardless of the strength of the disturbance. 

With the exception of the Mach number variation, subcritical flows of BZT fluids 
are qualitatively the same as those of perfect gases. However, supercritical flows can 
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FIGURE 11. Plot of the scaled pressure coefficient for flow over a circular arc airfoil. The similarity 
parameters are given by r> 0, K ,  x 2.28, and (a) K ,  = 0, ( b )  K ,  = 0.104, (c) K ,  = 0.208, ( d )  
K ,  = 0.312, (e) K ,  = 0.416, (f) K ,  = 0.520. 
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FIGURE 14. Plot of the Mach number distribution corresponding to  the flow of figure 13. 

be significantly different. As an illustration, we have recomputed the case depicted 
in figures l l ( f )  and 12 with a Mach number corresponding to supercritical 
conditions. The pressure and Mach number distributions are plotted in figures 13 and 
14. A contour plot of the scaled pressure coefficient is provided in figure 15. We find 
that two shocks are generated corresponding to the two supersonic regions expected 
in the vicinity of the local maxima in the Mach number distributions. As the flow 
expands away from the leading edge, a weak expansion shock is formed. The second 
shock is of the compression type and is formed downstream of the point of maximum 
thickness. Both shocks are non-sonic, although sonic shocks can be observed for 
other parameter choices. The flow pattern containing both expansion and 
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FIGURE 15. Contour plot of -c,r~ld corresponding to flow of figure 13. 

compression shocks is seen to be similar to that predicted by Warner (1990) and 
Chandrasekar & Prasad (1991) for flows of BZT fluids in converginggdiverging 
nozzles. However, in both of these previous investigations, the compression shock 
analogous to that seen in figure 13 is necessarily sonic. 

Another view of the expansion and compression shock is found in the contour plot 
of figure 15. The expansion shock is seen to spread and appears to disintegrate 
entirely before striking the compression shock. With the exception of the steepening 
near the wing associated with the expansion shock, the flow pattern superficially 
resembles that of the perfect gas theory, albeit when the latter is applied at lower 
Mach numbers. However, the values of pressure corresponding to supersonic 
conditions are given by 2.2 < - E p  < 5.5. As seen in figure 14, the flow between the 
expansion and compression shocks is primarily subsonic. It should be clear that a 
recognition of the non-monotone relation between the Mach number and pressure 
will be particularly important in the interpretation of contour plots of the Mach 
number. 

Subcritical and supercritical flows over a NACA OOXX cross-section are depicted 
in figure 16 for K ,  = 0.342, 0.684, and 1.368. If we employ the positive value of A 
given for PP11 in table 1, r = 0.25, and e = 0.02, we find that the corresponding 
Mach numbers are 0.995, 0.990, and 0.980. The plots at  K,  = 0.342 and 0.684 were 
found to be supercritical whereas that at K ,  = 1.368 is subcritical. This is in 
agreement with the theoretical prediction of K,, = 0.822. In the supercritical cases, 
the compression shock is found near the trailing edge. When the Mach number 
distribution was examined we found that the upstream state for this shock is nearly 
sonic. We would also expect to see an expansion shock near the leading edge. Such 
an expansion shock is consistent with the fundamental existence conditions. 
Furthermore, this expectation is also consistent with an inspection of the 
corresponding Mach number distributions, and the fact that the expansion remains 
steep even though the compression shock has already appeared. Unfortunately, the 
expansion region shown only contains one or two mesh points in spite of the fact that 
50 points were (uniformly) distributed over the chord, and no definite conclusion can 
be made. Inspection of figure 16 also reveals that a large part of the compression on 
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FIGURE 16. Plots of the scaled pressure coefficient for the flow over a NACA OOXX airfoil. The value 
of r is positive and K ,  x 1.216. The values of K ,  are: K ,  x 1.368 (O) ,  K ,  x 0.684 (a), K ,  % 0.342 
(0). 

the NACA OOXX series occurs gradually rather than through a shock. This limitation 
on the shock strength and associated adverse pressure gradient suggests there may 
be advantages in the use of BZT fluids even a t  supercritical speeds. 

Analogous computations were carried out by Morren (1991) who presented finite- 
volume solutions of the Euler equations supplemented with the van der Waals 
equation of state. When the free-stream state corresponded to that of figures 13-16, 
structures similar to those found here were obtained. In particular, the grid 
employed by Morren appears to  have better resolution near the nose of the 
NACA 0012 airfoil and an expansion shock is clearly visible. The gradual compression 
and reduced strength of the compression shock is also present in Morren’s results. 

As a final example of the non-classical dynamics of BZT fluids we consider a 
supercritical flow in which the free stream is still subsonic but which has r, < 0. A 
circular-arc airfoil with 6 = 0.02 is employed with M ,  x 0.995 and r = -0.25, 
A = 2.6. The pressure distribution on the wing is plotted in figure 17 and a contour 
plot of the pressures is given in figure 18. The novel feature seen here is that a bow 
shock of the compression type is generated upstream of the leading edge. There also 
appears to be an expansion shock downstream of the trailing edge. Both the 
compression and expansion shocks were predicted by Cramer & Best (1991). The 
physical reason for this bow shock is due to the non-classical variation in the Mach 
number illustrated in fighres 3 and 5 ( b ) .  In  the r, < 0 region, the Mach number will 
initially increase rather t tm decrease with pressure if M ,  x 1.  Thus, the large 
increase in the pressure occurring near the leading edge may drive the flow 
supersonic. Once the flow is supersonic further compression is likely to result in a 
shock. A detailed inspection of the Mach numbers generated shows that this is indeed 
the case. The occurrence of a bow shock is, of course, impossible in the perfect gas 
theory or, for that  matter, in any other in which the Mach number decreases 
monotonically with increasing pressure. Monotone increases in the pressure then 
simply decrease the Mach number and regions of supersonic flow ahead of the wing 
or turbine blade are not generated. 

Inspection of the contour plots reveals that the bow shock disintegrates at a finite 
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FIGURE 17. Plot of the scaled pressure coefficient over a circular-arc airfoil. The similarity 
parameters are given by r < 0, K ,  = 0.342, and K ,  = 1.216. The compressive bow shock can be seen 
between x = -0.8L and -0.G. The wake expansion shock can be seen between x 1 . 4 5  and 1.Z. 
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FIGURE 18. Contour plot of -c,l@/& corresponding to the flow of figure 17. 

distance normal to the blade. This may be anticipated by noting that the strength 
of any bow shock decreases with distance from the centreline. In the far-field 
r < 0 everywhere and the compression shock will violate the basic existence 
conditions, including the entropy inequality. Thus, such a bow shock will always 
terminate in the flow. We expect that similar arguments may be applied to show that 
both attached and detached leading compression shocks should disintegrate if 
M ,  > 1,  A > 0, r < 0. Arguments for attached oblique shocks in strictly supersonic 
flows have given by Cramer (1991). 

The rapid variations of the flow just downstream of the leading edge and just 
upstream of the trailing edge are expected to contain expansion and compression 
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shocks. A detailed inspection of the Mach number distribution shows that each shock 
is likely to be sonic a t  the upstream state. Paired sonic expansion and compression 
shocks were also found by Warner (1990) and Chandrasekar & Prasad (1991) in their 
studies of nozzle flows. 

9. Summary 
The work presented here should be regarded as a first step toward understanding 

the transonic flow of BZT fluids over thin airfoils or turbine blades. The main 
difference between the present, study and the classical small-disturbance theory is 
that the fundamental derivative is taken to  be small. The transonic small- 
disturbance equation was derived subject to this restriction and was found to include 
a second nonlinearity parameter related to the variation in r with density. The 
similarity properties of this equation are discussed in $4. It is found that the 
additional nonlinearity parameters complicate the similitude considerably. Of 
particular interest is the fact that  the value of the usual transonic similarity 
parameter (1.3) is no longer fixed at  the critical conditions. This breakdown in the 
classical similarity laws is to be expected whenever the fundamental derivative 
becomes small. 

Predictions of the critical Mach number were presented in $6. Very large increases 
in M ,  were reported, particularly when r > 0 and the free-stream thermodynamic 
state was in the vicinity of the high-pressure zero of r. The physical reasons behind 
these increases are two-fold. The first is due to the decrease in the intrinsic 
nonlinearity when r is small and could be anticipated through use of the classical 
similarity parameter (1.3). The second contribution to the increase is entirely non- 
classical and is because the flow expansion causes the local value of r to become 
negative. As a result, further expansion causes the local Mach number to decrease, 
thus limiting the maximum value of the local Mach number. This additional increase 
in M ,  due to the non-classical dynamics is particularly evident in calculations of the 
type summarized in table 2 and in the series of calculations represented in figures 11 
and 12. 

The results predicted here are expected to give a reasonable approximation to the 
actual flow provided our original assumptions are valid. We have conducted several 
numerical tests, both reported and unreported, which have confirmed that a wide 
range of blade configurations and flow parameters may be found such that the local 
disturbances remain small and the Mach number variation given here is a good 
approximation to the actual variation. These cases include those in which large 
increases in M ,  are observed. As discussed in 995 and 6, the prediction that M ,  = 1 
when r = 0 will never be realized in practice owing to the PrandtlLGlauert 
amplification of the disturbances. Even in these cases, the physical effects leading to 
the breakdown of the present theory require operation at  very large values of M,, 
thus suggesting that the actual limiting value of M ,  will still be large although not 
identically one. Further work is underway by the present authors to improve the 
estimates of this limiting value. 

The flow details were obtained through use of the numerical scheme outlined in $7 
and are seen to be in marked contrast to those of the perfect gas theory, particularly 
in the case of supercritical flows. Qualitatively similar flow patterns were also 
generated by Morren (1991) who solved the full Euler equations. We again conclude 
that the general flow features revealed here can be expected to be observed in more 
accurate numerical calculations or in experimental studies. 
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